436 research outputs found

    The Utility of Neuroimaging in the Differential Diagnosis of Parkinsonian Syndromes

    Get PDF
    The differential diagnosis of parkinsonian syndromes can be challenging, particularly in early disease stages. However, prognosis and therapeutic regimes are not alike in Parkinson disease and atypical parkinsonism, and thus a correct diagnosis at the earliest possible stage is desirable. Over the past two decades, magnetic resonance imaging and radiotracer-based imaging techniques have proven to be helpful tools to enhance the accuracy of clinical diagnosis in these disorders. Here, we review recent advances in neuroimaging for the differential diagnosis of parkinsonian syndromes

    Switching Language Modes: Complementary Brain Patterns for Formulaic and Propositional Language

    Get PDF
    © John J. Sidtis et al. 2018. Language has been modeled as a rule governed behavior for generating an unlimited number of novel utterances using phonological, syntactic, and lexical processes. This view of language as essentially propositional is expanding as a contributory role of formulaic expressions (e.g., you know, have a nice day, how are you?) is increasingly recognized. The basic features of the functional anatomy of this language system have been described by studies of brain damage: left lateralization for propositional language and greater right lateralization and basal ganglia involvement for formulaic expressions. Positron emission tomography (PET) studies of cerebral blood flow (CBF) have established a cortical-subcortical pattern of brain activity predictive of syllable rate during phonological/lexical repetition. The same analytic approach was applied to analyzing brain images obtained during spontaneous monologues. Sixteen normal, right-handed, native English speakers underwent PET scanning during several language tasks. Speech rate for the repetition of phonological/lexical items was predicted by increased CBF in the left inferior frontal region and decreased CBF in the head of the right caudate nucleus, replicating previous results. A complementary cortical-subcortical pattern (CBF increased in the right inferior frontal region and decreased in the left caudate) was predictive of the use of speech formulas during monologue speech. The use of propositional language during the monologues was associated with strong left lateralization (increased CBF at the left inferior frontal region and decreased CBF at the right inferior frontal region). Normal communication involves the integration of two language modes, formulaic and novel, that have different neural substrates

    Learning Optimal Deep Projection of 18^{18}F-FDG PET Imaging for Early Differential Diagnosis of Parkinsonian Syndromes

    Full text link
    Several diseases of parkinsonian syndromes present similar symptoms at early stage and no objective widely used diagnostic methods have been approved until now. Positron emission tomography (PET) with 18^{18}F-FDG was shown to be able to assess early neuronal dysfunction of synucleinopathies and tauopathies. Tensor factorization (TF) based approaches have been applied to identify characteristic metabolic patterns for differential diagnosis. However, these conventional dimension-reduction strategies assume linear or multi-linear relationships inside data, and are therefore insufficient to distinguish nonlinear metabolic differences between various parkinsonian syndromes. In this paper, we propose a Deep Projection Neural Network (DPNN) to identify characteristic metabolic pattern for early differential diagnosis of parkinsonian syndromes. We draw our inspiration from the existing TF methods. The network consists of a (i) compression part: which uses a deep network to learn optimal 2D projections of 3D scans, and a (ii) classification part: which maps the 2D projections to labels. The compression part can be pre-trained using surplus unlabelled datasets. Also, as the classification part operates on these 2D projections, it can be trained end-to-end effectively with limited labelled data, in contrast to 3D approaches. We show that DPNN is more effective in comparison to existing state-of-the-art and plausible baselines.Comment: 8 pages, 3 figures, conference, MICCAI DLMIA, 201

    Parkinson\u27s disease-related spatial covariance pattern identified with resting-state functional MRI

    Get PDF
    In this study, we sought to identify a disease-related spatial covariance pattern of spontaneous neural activity in Parkinson\u27s disease using resting-state functional magnetic resonance imaging (MRI). Time-series data were acquired in 58 patients with early to moderate stage Parkinson\u27s disease and 54 healthy controls, and analyzed by Scaled Subprofile Model Principal Component Analysis toolbox. A split-sample analysis was also performed in a derivation sample of 28 patients and 28 control subjects and validated in a prospective testing sample of 30 patients and 26 control subjects. The topographic pattern of neural activity in Parkinson\u27s disease was characterized by decreased activity in the striatum, supplementary motor area, middle frontal gyrus, and occipital cortex, and increased activity in the thalamus, cerebellum, precuneus, superior parietal lobule, and temporal cortex. Pattern expression was elevated in the patients compared with the controls, with a high accuracy (90%) to discriminate the patients from the controls. The split-sample analysis produced a similar pattern but with a lower accuracy for group discrimination in both the derivation (80%) and the validation (73%) samples. Our results showed that resting-state functional MRI can be potentially useful for identification of Parkinson\u27s disease-related spatial covariance patterns, and for differentiation of Parkinson\u27s disease patients from healthy controls at an individual level.Journal of Cerebral Blood Flow & Metabolism advance online publication, 3 June 2015; doi:10.1038/jcbfm.2015.118

    Thalamocortical Connectivity Correlates with Phenotypic Variability in Dystonia

    Get PDF
    Dystonia is a brain disorder characterized by abnormal involuntary movements without defining neuropathological changes. The disease is often inherited as an autosomal-dominant trait with incomplete penetrance. Individuals with dystonia, whether inherited or sporadic, exhibit striking phenotypic variability, with marked differences in the somatic distribution and severity of clinical manifestations. In the current study, we used magnetic resonance diffusion tensor imaging to identify microstructural changes associated with specific limb manifestations. Functional MRI was used to localize specific limb regions within the somatosensory cortex. Microstructural integrity was preserved when assessed in subrolandic white matter regions somatotopically related to the clinically involved limbs, but was reduced in regions linked to clinically uninvolved (asymptomatic) body areas. Clinical manifestations were greatest in subjects with relatively intact microstructure in somatotopically relevant white matter regions. Tractography revealed significant phenotype-related differences in the visualized thalamocortical tracts while corticostriatal and corticospinal pathways did not differ between groups. Cerebellothalamic microstructural abnormalities were also seen in the dystonia subjects, but these changes were associated with genotype, rather than with phenotypic variation. The findings suggest that the thalamocortical motor system is a major determinant of dystonia phenotype. This pathway may represent a novel therapeutic target for individuals with refractory limb dystonia

    Predictive Value of \u3csup\u3e18\u3c/sup\u3eF-Florbetapir and \u3csup\u3e18\u3c/sup\u3eF-FDG PET for Conversion from Mild Cognitive Impairment to Alzheimer Dementia

    Get PDF
    © 2020 by the Society of Nuclear Medicine and Molecular Imaging. The present study examined the predictive values of amyloid PET, 18F-FDG PET, and nonimaging predictors (alone and in combination) for development of Alzheimer dementia (AD) in a large population of patients with mild cognitive impairment (MCI). Methods: The study included 319 patients with MCI from the Alzheimer Disease Neuroimaging Initiative database. In a derivation dataset (n = 159), the following Cox proportional-hazards models were constructed, each adjusted for age and sex: amyloid PET using 18F-florbetapir (pattern expression score of an amyloid-β AD conversion-related pattern, constructed by principle-components analysis); 18F-FDG PET (pattern expression score of a previously defined 18F-FDG-based AD conversion-related pattern, constructed by principle-components analysis); nonimaging (functional activities questionnaire, apolipoprotein E, and mini-mental state examination score); 18F-FDG PET + amyloid PET; amyloid PET + nonimaging; 18F-FDG PET + nonimaging; and amyloid PET + 18F-FDG PET + nonimaging. In a second step, the results of Cox regressions were applied to a validation dataset (n = 160) to stratify subjects according to the predicted conversion risk. Results: On the basis of the independent validation dataset, the 18F-FDG PET model yielded a significantly higher predictive value than the amyloid PET model. However, both were inferior to the nonimaging model and were significantly improved by the addition of nonimaging variables. The best prediction accuracy was reached by combining 18F-FDG PET, amyloid PET, and nonimaging variables. The combined model yielded 5-y free-of-conversion rates of 100%, 64%, and 24% for the low-, medium- and high-risk groups, respectively. Conclusion:18F-FDG PET, amyloid PET, and nonimaging variables represent complementary predictors of conversion from MCI to AD. Especially in combination, they enable an accurate stratification of patients according to their conversion risks, which is of great interest for patient care and clinical trials

    Brain metabolism and autoantibody titres predict functional impairment in systemic lupus erythematosus

    Get PDF
    OBJECTIVE: We investigated whether systemic lupus erythematosus (SLE) disease duration or serology associate with abnormal regional glucose metabolism as measured with [(18)F]2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) and deficits on neuropsychological testing. METHODS: Subjects with SLE with stable disease activity, without brain damage or clinical symptoms of neuropsychiatric (NP) SLE, stratified by disease duration (short-term (ST)-SLE=disease/=10 years), underwent clinical assessments, neuropsychological testing, resting FDG-PET scan imaging and measurement of serum titres of antibody to N-methyl-d-aspartate receptor (DNRAb). FDG-PET scans were compared with age-matched and gender-matched healthy controls. RESULTS: Subjects with LT-SLE demonstrated hypometabolism in the prefrontal and premotor cortices that correlated with accrued SLE-related damage, but not with DNRAb titre or performance on NP testing. Independent of disease duration, subjects with SLE demonstrated hypermetabolism in the hippocampus and orbitofrontal cortex that correlated with impaired memory performance and mood alterations (depression, anxiety, fatigue). Serum DNRAb also correlated independently with impaired memory performance and increased anxiety. Together, serum DNRAb titre and regional hypermetabolism were more powerful predictors of performance than either alone. INTERPRETATION: The presence of serum DNRAbs can account for some aspects of brain dysfunction in patients with SLE, and the addition of regional measurements of resting brain metabolism improves the assessment and precise attribution of central nervous system manifestations related to SLE

    Metabolic resting-state brain networks in health and disease

    Get PDF
    The delineation of resting state networks (RSNs) in the human brain relies on the analysis of temporal fluctuations in functional MRI signal, representing a small fraction of total neuronal activity. Here, we used metabolic PET, which maps nonfluctuating signals related to total activity, to identify and validate reproducible RSN topographies in healthy and disease populations. In healthy subjects, the dominant (first component) metabolic RSN was topographically similar to the default mode network (DMN). In contrast, in Parkinson\u27s disease (PD), this RSN was subordinated to an independent disease-related pattern. Network functionality was assessed by quantifying metabolic RSN expression in cerebral blood flow PET scans acquired at rest and during task performance. Consistent task-related deactivation of the DMN-like dominant metabolic RSN was observed in healthy subjects and early PD patients; in contrast, the subordinate RSNs were activated during task performance. Network deactivation was reduced in advanced PD; this abnormality was partially corrected by dopaminergic therapy. Time-course comparisons of DMN loss in longitudinal resting metabolic scans from PD and Alzheimer\u27s disease subjects illustrated that significant reductions appeared later for PD, in parallel with the development of cognitive dysfunction. In contrast, in Alzheimer\u27s disease significant reductions in network expression were already present at diagnosis, progressing over time. Metabolic imaging can directly provide useful information regarding the resting organization of the brain in health and disease
    corecore